Примеры решений задач по эконометрике
В этом разделе вы найдете несколько готовые задачи с решениями по разным разделам эконометрики для студентов ВУЗов. Все примеры выложены бесплатно, вы можете их просмотреть, распечатать, изучить.
Если вам нужна помощь в выполнении ваших работ по эконометрике, обращайтесь: эконометрика на заказ. Делаем контрольные работы, лабораторные, выполняем решение задач в Эксель и специальных программах.
Задачи по эконометрике с решениями
Задача 1. По группе предприятий, производящих однородную продукцию, известно, как зависит себестоимость единицы продукции $y$ от факторов, приведенных в таблице. Определите с помощью коэффициентов эластичности силу влияния каждого фактора на результат. Проранжируйте факторы по силе влияния, сделайте вывод. Данные представлены в таблице.
Задача 2. В таблице указаны парные коэффициенты корреляции. Проведите анализ целесообразности включения заданных факторов в уравнение множественной линейной регрессии.
Задача 3. По некоторым территориям районов края известны значения средней суточного душевого дохода в у.е. (фактор $X$) и процент от общего дохода, расходуемого на покупку продовольственных товаров (фактор $Y$), таблица 1. Требуется для характеристики зависимости $Y$ от $X$ рассчитать параметры линейной, степенной, показательной функции и выбрать оптимальную модель (провести оценку моделей через среднюю ошибку аппроксимации $(А)$ и $F$-критерий Фишера.
Задача 4. На основе данных о доходах $Y$, расходах на промышленные товары $X_2$, наличии детей (табл. 1), необходимо построить модель с фиктивной переменной $D$ (принять $D = 1$, если дети есть; $D = 0$ при их отсутствии), вида:
$$Y=b_0+ b_2 X_2+b D.$$
Проверить статистическую значимость коэффициентов. Сделать выводы.
Задача 5. Постройте линии регрессии $Y$ на $х$ и $Х$ на $у$ для двумерной с.в. $(X,Y)$, закон распределения которой задан таблицей, рассчитайте коэффициенты корреляции и детерминации.
Задача 6. 1) Постройте поле корреляции результативного и факторного признаков.
2) Определите параметры уравнения парной линейной регрессии. Дайте интерпретацию найденных параметров и всего уравнения в целом.
3) Постройте теоретическую линию регрессии, совместив ее с полем корреляции. Сделайте выводы.
4) Рассчитайте линейный коэффициент корреляции и поясните его смысл. Определите коэффициент детерминации и дайте его интерпретацию.
5) С вероятностью 0,95 оцените статистическую значимость коэффициента регрессии и уравнения регрессии в целом. Сделайте выводы.
6) С вероятностью 0,95 постройте доверительный интервал для прогноза оценки $y_t$ и доверительный интервал генерального значения.
7) Определите значение коэффициента эластичности и объясните его.
Компания, занимающаяся продажей радиоаппаратуры, установила на видеомагнитофон определенной модели цену, дифференцированную по регионам. Следующие данные показывают цены на видеомагнитофон в 8 различных регионах и соответствующее им число продаж.
Задача 7. В таблице приведены данные о прибыли $Y$ (в тыс. руб.) в зависимости от доли товара $А$ в грузообороте $X$ (%).
1. Построить корреляционное поле. Выдвинуть предположение о характере статистической зависимости между переменными $X$ и $Y$.
2. Найти параметры линейного уравнения регрессии. Поясните экономический смысл выборочного коэффициента регрессии.
3. Найти коэффициент парной корреляции и оценить тесноту связи на основе таблицы Чеддока.
4. Найти коэффициент детерминации $R^2$.
5. Оценить статистическую значимость уравнения регрессии на уровне 0,05, используя $F$-статистику.
6. Полученное уравнение регрессии изобразить графически. Сделать вывод о качестве построенной модели.
7. Вычислить прогнозное значение при прогнозном значении $x_0$, составляющем 130% от среднего уровня $x$.
Задача 8. По группе 18 заводов, производящих однородную продукцию, получено уравнение регрессии себестоимости продукции $Y$ (тыс. руб.) от уровня технической оснащенности $X$ (тыс. руб.):
$$y_i = 20+700/x$$
Доля остаточной дисперсии в общей составила 0,19. Найдите индекс корреляции, а также проверьте статистическую значимость уравнения регрессии в целом с помощью критерия Фишера ($\alpha = 0,05$).
Задача 9. По 25 предприятиям региона изучается зависимость выработки продукции на одного работника $у$ (тыс. руб.) от ввода в действие новых основных фондов $х_1$ (% от стоимости фондов на конец года) и от удельного веса рабочих высокой квалификации в общей численности рабочих $х_2$ (%).
$$y_i=-1.725+0.903 x_1+0.081 x_2, \, \overline{y}=9.6 \, \overline{x_1}=6.27 \, \overline{x_2}=22.3$$
Определить с помощью коэффициентов эластичности силу влияния каждого фактора на результат. Ранжировать факторы по силе влияния. Найти скорректированный коэффициент детерминации, если множественный коэффициент детерминации равен 0,74.
Задача 10. В результате исследования зависимости среднедневной заработной платы $Y$ от среднедушевого прожиточного минимуме в день одного трудоспособного $Х$ по $n$ территориям региона было получено линейное уравнение регрессии $y=bx+a$. Исследуйте остатки данного уравнения регрессии на гетероскедастичность с помощью теста Голдфельда-Квандта на уровне значимости $\alpha = 0.01$, если остаточные суммы квадратов для первой и второй групп соответственно равны $S_1 = 0,07$ и $S_2 = 0,92$; число степеней свободы остаточных сумм квадратов равны $k=k_1=k_2=6$.
Задача 11. Применив необходимое и достаточное условие идентификации, определите, идентифицировано ли каждое из уравнений модели.
Может пригодиться: примеры решений по эконометрике в Excel