Учебник по теории вероятностей
1.7. Независимые испытания. Формула Бернулли
При решении вероятностных задач часто приходится сталкиваться с ситуациями, в которых одно и тоже испытание повторяется многократно и исход каждого испытания независим от исходов других. Такой эксперимент еще называется схемой повторных независимых испытаний или схемой Бернулли.
Примеры повторных испытаний:
- бросание монеты или игрального кубика (вероятности выпадения герба/решки или определенной цифры одинаковы в каждом броске);
- извлечение из урны шара при условии, что вынутый шар после записи его цвета кладется обратно в урну (то есть состав шаров в урне не меняется и не меняется вероятность вынуть шар нужного цвета);
- включение приборов (ламп, станков и т.п.) с заранее заданной одинаковой вероятностью выхода из строя каждого;
- повторение стрелком выстрелов по одной и той же мишени при условии, что вероятность удачного попадания при каждом выстреле принимается одинаковой и т.д.
Итак, пусть в результате испытания возможны два исхода: либо появится событие А, либо противоположное ему событие. Проведем $n$ испытаний Бернулли. Это означает, что все $n$ испытаний независимы; вероятность появления события $А$ в каждом отдельно взятом или единичном испытании постоянна и от испытания к испытанию не изменяется (т.е. испытания проводятся в одинаковых условиях). Обозначим вероятность появления события $А$ в единичном испытании буквой $р$, т.е. $p=P(A)$, а вероятность противоположного события (событие $А$ не наступило) - буквой $q=P(\overline{A})=1-p$.
Тогда вероятность того, что событие $А$ появится в этих $n$ испытаниях ровно $k$ раз, выражается формулой Бернулли
$$P_n(k)=C_n^k \cdot p^k \cdot q^{n-k}, \quad q=1-p.$$Распределение числа успехов (появлений события) носит название биномиального распределения.
Онлайн-калькуляторы для формулы Бернулли
Некоторые наиболее популярные типы задач, в которых используется формула Бернулли, разобраны в статьях и снабжены онлайн-калькулятором, вы можете перейти к ним по ссылкам:
- Задача про партии в шахматы
- Задача про выстрелы
- Задача про мальчиков и девочек
- Задача про лотерейные билеты
- Задача о наивероятнейшем значении
- Формула Пуассона
Примеры задач с решениями
Пример. В урне 20 белых и 10 черных шаров. Вынули 4 шара, причем каждый вынутый шар возвращают в урну перед извлечением следующего и шары в урне перемешивают. Найти вероятность того, что из четырех вынутых шаров окажется 2 белых.
Решение. Событие А – достали белый шар. Тогда вероятности
, .
По формуле Бернулли требуемая вероятность равна
.
Пример. Определить вероятность того, что в семье, имеющей 5 детей, будет не больше трех девочек. Вероятности рождения мальчика и девочки предполагаются одинаковыми.
Решение. Вероятность рождения девочки
, тогда .
Найдем вероятности того, что в семье нет девочек, родилась одна, две или три девочки:
, ,
, .
Следовательно, искомая вероятность
.
Пример. Среди деталей, обрабатываемых рабочим, бывает в среднем 4% нестандартных. Найти вероятность того, что среди взятых на испытание 30 деталей две будут нестандартными.
Решение. Здесь опыт заключается в проверке каждой из 30 деталей на качество. Событие А - «появление нестандартной детали», его вероятность , тогда . Отсюда по формуле Бернулли находим
.
Пример. При каждом отдельном выстреле из орудия вероятность поражения цели равна 0,9. Найти вероятность того, что из 20 выстрелов число удачных будет не менее 16 и не более 19.
Решение. Вычисляем по формуле Бернулли:
Пример. Независимые испытания продолжаются до тех пор, пока событие А не произойдет k раз. Найти вероятность того, что потребуется n испытаний (n ³ k), если в каждом из них .
Решение. Событие В – ровно n испытаний до k-го появления события А – есть произведение двух следующий событий:
D – в n-ом испытании А произошло;
С – в первых (n–1)-ом испытаниях А появилось (к-1) раз.
Теорема умножения и формула Бернулли дают требуемую вероятность:
Надо заметить, что использование биномиального закона при большом числе испытаний вычислительно трудно. Поэтому с возрастанием значений $n$ становится целесообразным применение приближенных формул (Пуассона, Муавра-Лапласа), которые будут рассмотрены в следующих разделах.
Видеоурок про формулу Бернулли
Для тех, кому нагляднее последовательное видеообъяснение, 15-минутный ролик:
Полезные ссылки
- Далее: Наивероятнейшее число успехов
- Назад: Формула полной вероятности и формула Байеса
- Решение задач на бросание монет с помощью формулы Бернулли
- Решение задач про станки помощью формулы Бернулли
- Решение задач по формуле Бернулли в Excel
- Статьи по теории вероятностей
- Формулы по теории вероятностей