Формула числа сочетаний
Определение числа сочетаний
Пусть имеется $n$ различных объектов и требуется найти число сочетаний из $n$ объектов по $k$. Будем выбирать комбинации из $k$ объектов всеми возможными способами, при этом будем обращать внимание на разный состав комбинаций, но не порядок (он тут не важен, в отличие от размещений).
Например, есть три ($n=3$) объекта {1,2,3}, составляем сочетания по $k=2$ объекта в каждом. Тогда выборки {1,2} и {2,1} - это одно и то же сочетание (так как комбинации отличаются лишь порядком). А всего различных сочетаний из 3 объектов по 2 будет три: {1,2}, {1,3}, {2,3}.
На картинке наглядно проиллюстрировано получение всех возможных сочетаний из 4 различных объектов по 2 (их будет 6, см. калькулятор сочетаний ниже, который даст формулу расчета).
Общая формула, которая позволяет найти число сочетаний из $n$ объектов по $k$ имеет вид:
$$C_n^k=\frac{n!}{(n-k)!\cdot k!}.$$Чаще всего сочетания используются в комбинаторных задачах и задачах на расчет вероятности по формуле классической вероятности (см. теорию и примеры).
Смотрите также другие онлайн-калькуляторы
Найти сочетания из n по k
Чтобы вычислить число сочетаний $C_n^k$ онлайн, используйте калькулятор ниже.
Видеоролик о сочетаниях
Не все понятно? Посмотрите наш видеообзор для формулы сочетаний: как использовать Excel для нахождения числа сочетаний, как решать типовые задачи и использовать онлайн-калькулятор.
Расчетный файл из видео можно бесплатно скачать
Полезные ссылки
- Онлайн учебник по теории вероятностей
- Основные формулы комбинаторики
- Примеры решений задач по теории вероятностей
- Заказать свои задачи на вероятность
Решебник по ТВ
Решебник с задачами по комбинаторике и теории вероятностей: