Решение задачи о раскладывании шаров
Задача 3. Шесть шаров случайным образом раскладывают в три ящика. Найти вероятность того, что во всех ящиках окажется разное число шаров, при условии, что все ящики не пустые.
Решение: Используем классическое определение вероятности: $P=m/n$, где $m$ - число исходов, благоприятствующих осуществлению события, а $n$ - число всех равновозможных элементарных исходов.
$m = 6$, так как есть только три случая расположения 6 шаров по 3 ящикам, чтобы во всех ящиках оказалось разное число шаров: (1, 2, 3), (2, 1, 3), (3, 2, 1), (1, 3, 2), (2, 3, 1), (3, 1, 2).
Всего случаев расположения 6 шаров по 3 ящикам, чтобы ни один ящик не остался пустым равно $$m=C_{6-1}^{3-1}=C_5^2=\frac{5!}{2!3!}=\frac{4 \cdot 5}{1 \cdot 2 }=10.$$
Тогда искомая вероятность $P=6/10=0,6$.
Ответ: 0,6.