©МатБюро - Решение задач по математике, статистике, экономике, программированию Еще решения математической статистики: www.matburo.ru/ex_subject.php?p=ms

Решение задачи на тему «Дисперсионный анализ»

Задание. Используя анализ однофакторной модели, проверить гипотезу о влиянии методик на оценку качества признака.

Исследуется эффективность обучения тремя различными методами. Студентам дается задание изучить тему «Денежная система в Англии». Для этого 10 студентов конспектируют первоисточник, 10 изучают ее по программированному учебнику, 10 – с помощью обучающих компьютерных программ. По окончании их уровень знаний проверяется с помощью теста, состоящего из 100 вопросов. Результаты представлены в таблице:

Баллы по тесту для трех методик					
Первоисточник	Учебник	Компьютер			
28	39	41			
33	52	49			
42	53	56			
47	54	62			
48	56	63			
50	58	64			
50	59	65			
51	63	72			
60	64	77			
71	77	87			

Вопросы:

- 1) Влияет ли методика изучения темы на результат? Есть ли значимые различия между тремя выборками по уровню усвоения материала?
- 2) Есть ли статистически значимая тенденция возрастания показателей в порядке «первоисточник» «учебник» «компьютер»?

Решение.

Часть 1.

Начнем с однофакторного дисперсионного анализа для данных задачи, чтобы проверить, есть ли разница в эффективности обучения тремя различными методами.

Составим дисперсионную таблицу:

	Ф	$oldsymbol{\Phi}_1 \hspace{1cm} oldsymbol{\Phi}_2 \hspace{1cm} oldsymbol{\Phi}_3$		Φ_2		D ₃	
i	\mathcal{Y}_{i1}	y_{i1}^2	y_{i2}	y_{i2}^2	y_{i3}	y_{i3}^2	Сумма
1	28	784	39	1521	41	1681	
2	33	1089	52	2704	49	2401	
3	42	1764	53	2809	56	3136	
4	47	2209	54	2916	62	3844	
5	48	2304	56	3136	63	3969	

Задача скачана с сайта www.MatBuro.ru

©МатБюро - Решение задач по математике, статистике, экономике, программированию Еще решения математической статистики: www.matburo.ru/ex_subject.php?p=ms

6	50	2500	58	3364	64	4096	
7	50	2500	59	3481	65	4225	
8	51	2601	63	3969	72	5184	
9	60	3600	64	4096	77	5929	
10	71	5041	77	5929	87	7569	
$T_j = \sum y_{ij}$	480		575		636		1691
$S_j = \sum y_{ij}^2$		24392		33925		42034	100351
T_j^2	230400		330625		404496		965521

Найдем общую и факторную суммы квадратов отклонений, учитывая, что число уровней фактора p=3, число испытаний на каждом уровне q=10. Получаем:

$$\begin{split} S_{o\delta uq} &= \sum_{j=1}^{p} S_{j} - \frac{1}{pq} \left(\sum_{j=1}^{p} T_{j} \right)^{2} = 100351 - \frac{1}{30} 1691^{2} = 5034,967 \\ S_{\phi a \kappa m} &= \frac{1}{q} \sum_{j=1}^{p} T_{j}^{2} - \frac{1}{pq} \left(\sum_{j=1}^{p} T_{j} \right)^{2} = \frac{1}{10} 965521 - \frac{1}{30} 1691^{2} = 1236,067 \end{split}$$

Найдем остаточную сумму квадратов отклонений

$$S_{ocm} = S_{oou} - S_{daxm} = 5034,967 - 1236,067 = 3798,9$$

Найдем дисперсии

$$s_{\phi a \kappa m}^{2} = \frac{S_{\phi a \kappa m}}{p-1} = \frac{1236,037}{2} = 618,033$$
$$s_{o c m}^{2} = \frac{S_{o c m}}{p(q-1)} = \frac{3798,9}{3 \cdot 9} = 140,7$$

Сравним факторную и остаточную дисперсию с помощью критерия Фишера-Снедекора. Найдем наблюдаемое значение критерия

$$F_{\text{набл}} = \frac{s_{\phi \text{акm}}^2}{s_{\text{ocm}}^2} = \frac{618,033}{140,7} = 4,393 \ .$$

По числу степеней свободы $k_1=2$, $k_2=27$ и по уровню значимости $\alpha=0,05$ (выбрали стандартный уровень значимости) находим критическую точку $F_{\kappa pum}=3,354$. Так как $F_{\kappa pum}>F_{\kappa pum}$, следует отвергнуть гипотезу, влияние фактора значимо (установлено).

Таким образом, разные методики дают разные по эффективности результаты обучения. Есть значимые различия между тремя выборками по уровню усвоения материала.

Задача скачана с сайта www.MatBuro.ru

©МатБюро - Решение задач по математике, статистике, экономике, программированию Еще решения математической статистики: www.matburo.ru/ex_subject.php?p=ms

Часть 2.

Перейдем к второму вопросу задачи: есть ли статистически значимая тенденция возрастания показателей в порядке «первоисточник» - «учебник» - «компьютер»?

Используем критерий Джонкхиера.

Статистика критерия имеет вид: $S = \sum_{i=1}^k \sum_{j=1}^{n_i} a_{ij}$, где a_{ij} - количество наблюдений из первых i-1 выборок, меньших, чем y_{ij} – j-е наблюдение в i-й выборке (здесь i>1).

Для начала нужно упорядочить данные в соответствии с выбранным порядком между группами, что у нас и сделано в таблице (сначала A – первоисточник, затем B – учебник, затем C – компьютер).

Для каждого значения в каждой группе нужно подсчитать количество чисел больше его в каждой последующей группе и поместить данные в таблицу. Затем подведем итог для каждого попарного сравнения. Имеем:

A <b< th=""><th>A<c< th=""><th>B<c< th=""></c<></th></c<></th></b<>	A <c< th=""><th>B<c< th=""></c<></th></c<>	B <c< th=""></c<>
10	10	10
10	10	8
9	9	8
9	9	8
9	9	7
9	8	7
9	8	7
9	8	5
3	7	4
1	3	1
78	81	65

Гипотеза отсутствия сдвига отклоняется, если $S>S_{\alpha}$, где S_{α} – табулированные при небольших объемах выборок значения.

Вычисляем статистику критерия
$$S = 2\sum R - \frac{C(C-1)}{2}n^2$$
, где

где R - вектор итогов по каждому сравнению,

C - количество попарных сравнений,

n - число объектов в каждой группе.

Тогда мы получим, что

$$S = 2(78 + 81 + 65) - \frac{3(3-1)}{2}10^2 = 148.$$

Задача скачана с сайта www.MatBuro.ru

©МатБюро - Решение задач по математике, статистике, экономике, программированию Еще решения математической статистики: www.matburo.ru/ex_subject.php?p=ms

При $n_i \ge 10$ применима аппроксимация нормальным распределением

$$S_{\alpha} = M(S) + \Phi_{\alpha} \sqrt{D(S)}$$
,

где
$$M(S) = \frac{1}{4} \left(\left(\sum_{i=1}^{k} n_i \right)^2 - \sum_{i=1}^{k} n_i^2 \right), \ D(S) = \frac{1}{72} \left\{ \left(\sum_{i=1}^{k} n_i \right)^2 \left(2 \sum_{i=1}^{k} n_i + 3 \right) - \sum_{i=1}^{k} n_i^2 \left(2 n_i + 3 \right) \right\},$$

 Φ_{α} - α -квантиль нормального распределения.

Вычисляем (у нас $n_i = n = 10, k = 3$):

$$M(S) = \frac{1}{4}(30^2 - 3 \cdot 10^2) = 150$$
,

$$D(S) = \frac{1}{72} \left\{ 30^2 \left(2 \cdot 30 + 3 \right) - 3 \cdot 10^2 \left(2 \cdot 10 + 3 \right) \right\} = 691,67,$$

$$\Phi_{\alpha} = \Phi_{0.05} = 1,645$$
.

Подставляем: $S_{\alpha} = 150 + 1,645 \cdot \sqrt{691,67} = 193,26$.

Так как $S = 148 < 193, 26 = S_{\alpha}$, то гипотезу отсутствия сдвига можно принять, то есть принимаем упорядоченность выборок.

Получаем, что есть статистически значимая тенденция возрастания показателей в порядке «первоисточник» - «учебник» - «компьютер».