Задача скачана с сайта <u>www.MatBuro.ru</u> ©МатБюро - Решение задач по высшей математике

Тема: Линейные пространства

Задание. Для каждого из следующих множеств геометрических векторов определить, будет ли это множество линейным подпространством пространства V_3 :

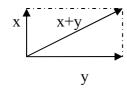
- 1) радиус-векторы точек данной плоскости;
- 2) векторы, образующие с данным ненулевым вектором \bar{a} угол α ;
- 3) множество векторов, удовлетворяющих условию $|\bar{x}| = 1$.

Решение. По определению подмножество M элементов линейного пространства L называется подпространством пространства L, если выполнены два условия:

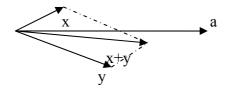
- 1) $\forall x, y \in M (x + y) \in M$
- 2) $\forall x \in M, \forall \alpha \in R \ \alpha x \in M$.

Проверим выполнение этих условий в каждом случае.

1. Множество радиус-векторов точек плоскости (то есть векторов с началом в начале координат и концом в искомой точке) является линейным подпространством пространства V_3 , так как выполнены оба условия определения. Действительно, сумма двух векторов с началом в начале координат есть вектор с началом в начале координат, то есть радиус-вектор некоторой точки (правило параллелограмма сложения векторов, см. рисунок). Произведение вектора на число дает вектор с началом в той же точке, но растянутый/сжатый в некоторое число раз, то есть тоже радиус-вектор некоторой точки.



2. Множество векторов, образующих с данным ненулевым вектором \bar{a} угол α не является линейным подпространством пространства V_3 , так как не выполнено первое условие определения. Действительно, можно найти такие два вектора х и у, образующие с данным ненулевым вектором \bar{a} угол α , что их сумма (х+у) не будет образовывать с вектором \bar{a} угол α (см. рисунок).



3. Множество векторов, удовлетворяющих условию $|\overline{x}| = 1$ не является линейным подпространством пространства V_3 , так как не выполнено второе условие определения. Действительно, если умножить любой вектор, такой что $|\overline{x}| = 1$ на любое число $\alpha \neq 0,1$, то получим новый вектор, длина которого $|\alpha \overline{x}| = |\alpha| \neq 1$.